
.
1

Nonlinear Evolution of Alfvhic Wave Packets

B. Buti, 1 V. Jayanti ,2 A. F. Viiias,3S. Ghosh,4 M. L. Goldstein,3 D. A. Roberts,3 G. S.

Lakhina, ] and B. T. Tsurutani,l

Short title: NONLINEAR EVOLUTION OF ALFVENIC WAVE PACKETS

lJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.

2Universities Space Research Association, Code 692, NASA/Goddard Space Flight

Center, Greenbelt, MD 20771.

3Code 692, NASA/Goddard Space Flight Center, Greenbelt, MD 20771.

4Space Applications Corporation, Large, MD 20774



.
2

Abstract. Alfv6n waves are a ubiquitous feature of the solar wind. One

approach to studying the evolution of such waves has been to study exact solutions to

approximate evolution equations. Here we compare soliton solutions of the Derivative

Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible

MHD equations. We find that the soliton solutions of the DNLS equation are not stable

solutions of MHD—they evolve and dissipate with time. Although such solitons may

serve as approximate initial conditions to the MHD equations, they are not stationary

solutions. This may account for the absence of soliton-like wave forms in the free-flowing

solar wind.
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Alfv6n wave trains have been observed in the solar wind [Belcher and Davis, 1971],

in the vicinity of planetary and interplanetary shocks [Agirn et aL, 1995] and near

comets [Scarj et al,, 1986; Goldstein et al., 1990]. The evolution of finite amplitude

low frequency waves can be best studied bysolvi~lg themagnetohydrody 1lamic (MHD)

equations, however, those equations are highly nonlinear and are not amenable to

analytic solutions except in very special (or linear) cases. Thus it is difficult to explore

efficiently all relevant regions of parameter space. Consequently, for finite but small

amplitude MHD waves, a variety of evolution equations have been derived which have

the advantage that exact analytic solutions can sometimes be found.

One of the most widely used equations is the Derivative Nonlinear Schrodinger

(DNLS) equation [Kennel et al., 1988], Spangler [1997] pointed out that although the

DNLS equation is only formally valid for d13/13 <1, many nonlinear wave characteristics

including wave-packet steepening, shocklet formation, and the evolution of polarization

can be addressed by the DNLS equation. Consequently, the DNLS formalism has been

applied to the study of low frequency waves upstream of the Earth’s bow shock.

However, for large amplitude waves (61?/l? z 1), the approximations leading to the

DNLS equation become invalid because the derivation includes terms only up to cubic

nonlinearities. In addition, solutions of the DNLS equation are not valid for ~ N 1,

where @ is the ratio of thermal to magnetic energy. For ~ * 1, coupling between Alfv6n

waves and ion acoustic waves becomes significant. Consequent ly, one has to use scalings

different than those used in the derivation of the DNLS. In deriving the DNLS equation

the density is assumed to vary on a slower time scale than the magnetic field. Hada

[1993], using different stretching, showed that a system of coupled equations for the

density and magnetic field fluctuations is required to describe the interaction of ion

acoustic and Alfv6n waves.

Recently, Roychoudhwy et al. [1997], employing a Pain16ve analysis of the equations
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of Hada [1993], showed that, unlike the DNLS equation, the equations studied by

Hada [1993] are not completely integrable. However, under translational invariance, it

is possible to get a soliton solution in terms of hyperelliptic functions. In this letter

we concentrate on comparing the solutions of the DNLS equation with solutions of

the Hall-MHD system. We will address in subsequent work the question of how well

some of the more recent extensions of the DNLS formalism succeed in describing such

phenomena as the formation of discontinuities (see, for example, Mjolhus and Hada

[1997]; Medvedev et al. [1997].

In the solar wind, ~, T. and Z’aall vary with heliospheric distance. In particular, ~

spans the entire range from small to large values. Consequently, depending on location

in the heliosphere, use of the DNLS equation to explore the evolution of Alfv6nic wave

packets can be inadequate and it becomes necessary to solve the full set of MHD

equations. A major goal of this letter is to ascertain the extent to which solutions of

the DNLS equation represent an adequate approximation to solutions of the MHD

equations. To explore this issue, we employ a one-dimensional MHD code including the

Hall term (to account for some tw~fluid effects) to study the temporal evolution of

large amplitude Alfv6nic solitons and wave packets. Our simulation results are valid for

any Te / Tz ratio, but are restricted to quasi-parallel propagation. Because solitons are

exact solutions of the DNLS equation, we have used them as initial conditions to the

MHD equations. The DNLS equation is not valid for very large amplitude fluctuations,

consequently, we take 613/B = 0.25 in the MHD solutions shown here. In addition, the

solutions we show are for values of P not near unity. The evolution of the solitons is

then followed to see if they remain stable.

The evolution of Alfv6nic wave packets has been studied previously by Roberts

and W’iltberger [1995] using a one-dimensional MHD code. That study focused on the

evolution of linearly polarized Alfv4n waves rather than soliton-like wave packets and

concluded that the waves evolved into quasi-steady MHD states that resembled neither
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solitons nor discontinuities.

Formulation and Simulation Results

Stability of DNLS solitons

For these calculations, we assume that the compressible two-fluid MHD equations

include a scalar pressure p = P(P), where p = p. + pi, p is the density. In dimensionless

units, the equations can be written in the form [Sakai and Sonnerup, 1983]

where us is the flow velocity along the direction of propagation, b is the magnetic

field, & = (by+ i bz) and U = (vu + i VZ). The magnetic fields are normalized to Bo,

velocities to the Alfv6n speed, VA; pressure to B~/(47rpo); and p to po. B. and p. are

the equilibrium magnetic field and the density respectively.

For ~ # 1, these equations have been simplified using reductive perturbation

methods [Taniuti and Wei, 1968], which, for magnetic fluctuations carried to third

order, yield the DNLS equation.
E

(6)

where B = (Bv + i Bz ) . All the quantities in eqn. (6) are dimensionless. Because

solutions to the MHD equations rarely form quasi-stationary final states and almost

never relax to simple solitons, we have used exact soliton solutions of the DN LS equation



as initial conditions to the MHD equations to test the DNLS solutions. Here we do not

address the question of how such a soliton initial condition might arise in nature. We

take the following soliton solution of eqn. (6) [IVocera and Buti,

condition for the MHD equations:

(21/2- 1)1/2~mazeio(z)
B (z, to)=

[2’/2 cosh (2 ~ x) - I]W ‘

where Bmazis the amplitude of the soliton,

and V~ is the soliton speed defined by,

1996] as the initial

(7)

(8)

(9)

The MHD system of equations were solved using Fast Fourier Transforms (FFTs)

to evaluate the spatial derivatives. For the time integration we used a fourth order

Adams-Bashforth scheme [Hamming, 1962]. Viscous dissipation (e.g.,[ Ghosh et a~.,

1996] ) was added to the momentum equation to suppress aliasing errors at high wave

numbers.
=

The initial soliton was defined over a 2550VA /flP size box with 256 grid points (flP

is the proton cyclotron frequency). We first examined the evolution of both right-hand

polarized (RHP) and left-hand polarized (LHP) solitons for a range of values of ~.

The results are shown in Figures 1 – 3 where the amplitudes of the fluctuations in

the magnitude of the magnetic field, B, and fluctuations in the density p are plotted.

Selected power spectra are plotted in Figure 4.

Figures la and lb illustrate the evolution of the magnetic field and the density from

t = 40Q~l to t = 5000Q~l for the RHP soliton for ~ = 0.3 and ~ = 1.5, respectively.

The waves steepen at intermediate time, and then form wave trains on the leading edge

for P < 1, and on the trailing edge for @ > 1. The corresponding evolution of LHP
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solitons with /3 = 0.3 and 1.5, respectively are shown in Figures 2a and 2b. Figure 3

shows the evolution for ~ = 3 for a RHP soliton. By t = 5000f$1 (thick solid line)

the soliton initial condition has again evolved substantially away from the initial state

(thin solid line). In this case however the wave train has almost disappeared. That the

soliton initial condition is an approximate equilibrium is emphasized by the fact that at

t = 40Q~ 1 (dashed line) the shape of the wave packet is essentially unchanged from the

initial condition.

Figure 4 shows the power spectra of the magnetic field corresponding to the

solutions shown in Figures 1 and 2 at t = 5000Q~l. Although all the power spectra

for each polarization and ~ differ, none have evolved to having a dominant power law

spectrum, at least for the times calculated here. It is clear from Figure 1 – 3 that the

evolution has not progressed to the point that the soliton has become turbulent, nor do

we know if it ever will.

The slow variation of the plasma density compared to the transverse magnetic field,

which is assumed in deriving the DNLS equation, holds well in the early phase of the

nonlinear evolution of the wave packet, (cf. t = O and t = 40QP); however it soon becomes

invalid. This failure is independent of both polarization and ~. Similar conclusions on

the limitations of the DNLS equation were reached by Spangler [1997] (also see, Agim

et al. [1995]). In the DNLS framework, the slow variations in density force a correlation

of density with magnetic field–-a constraint not imposed on the Hall-MHD equations.

Consequently, the relatively smooth and slow evolution of the wave packet indicates

that DNLS solitons are approximate equilibrium initial conditions. However, the DiXLS

solitons are not long-time solutions of the MHD equations.
=

Conclusions

Solutions of the compressible MHD equations evolve in such a way that the solitcm

initial condition steepen at the leading or trailing edge depending on the initial w-ave
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polarization and also on whether ~ is less than or greater than unity. On the opposite

edges, i.e., on the edges where no steepening is seen, wave trains form as the soliton

evolves away from its initial state. The soliton loses its inherent stability even though it

is propagating in a homogeneous non-driven system. Such behavior is expected of the

DNLS soliton in a driven system [Hada et al., 1990] or in an inhomogeneous system

[l?zdi, 1991]. These features indicate that the Alfv6n waves are coupling to density

fluctuations that are not described properly by the DNLS equation.’ Because of this

coupling, as shown by Roychoudhury et uZ. [1997], the soliton cannot remain coherent.

The DNLS equation relies on the implicit static relationship between magnetic field

and density fluctuations and the neglect of higher order couplings (cf. Spangler [1997]).

These approximations break down with time as seen in the simulation results. Even

though the DNLS equation is a good model for studying a number of nonlinear wave

properties, the interpretation should be limited to finite time scales, even for relatively

small wave amplitudes. One has to rely on the simulation of the Hall-MHD equations

to get the true picture of the long term evolution of the wave-trains and wave-packets

such as those observed in the solar wind.
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Figure Captions
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The evolution of the magnetic and density fluctuations, 1? and dp, respec-

tively, for a RHP soliton for ~ = 0.3 at t w 40C?~l (dashed line) and at 5000 Qjl (solid

line). (b) Same as (a) but for ~ = 1.5.



12

0.40

0.20

0.00

I

(a) I B

‘\

0.10 -
-0.04t (1

II

II

-0.06I I
o 85 170 255 0 85 170 255

x(1 o vA/~) )( (1o vA/~)

Figure 2. (a) Same as Fig. la but for LHP soliton. (b) Same as Fig. lb but for LHP

soliton.
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Figure 3. Same as Fig. la but for an initial soliton with ~ = 3.o. Thicker solid line is

for t = 5000 f_ljl and thinner one for t = O.
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